### Colloquia

July 27, 20174.00 pm: Quantum simulations with strongly interacting photons: Merging condensed matter with quantum optics for quantum technologies By Dimitris Angelakis, Centre for Quantum Technologies, NUS |

August 31, 20174.00 pm: What do the data tell us? By Berge Englert, Centre for Quantum Technologies, NUS |

September 07, 20174.00 pm: Evolution and Perspective of Planar Waveguide Devices By Katsunari Okamoto, Okamoto Laboratory, Japan |

→ expand colloquia list and access videos...

**Date:** 13 January 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** James P. Crutchfield, University of California at Davis

**Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems**

**Abstract:**

We introduce a deterministic chaotic system—the Szilard Map—that encapsulates the measurement, control, and erasure protocol by which Maxwellian Demons extract work from a heat reservoir. Implementing the Demon's control function in a dynamical embodiment, our construction symmetrizes Demon and thermodynamic system, allowing one to explore their functionality and recover the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and due to erasure. The map's degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate of energy extraction from the heat bath. Moreover, an engine's statistical complexity quantifies the minimum necessary system memory for it to function. In this way, dynamical instability in the control protocol plays an essential and constructive role in intelligent thermodynamic systems.

**Date:** 2 February 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Fernando Pastawski, Institute for Quantum Information and Matter (IQIM)

**Holographic quantum error-correcting codes**

**Abstract:**

In this talk, I will explore the recent connection between two profound ideas, quantum error correction and holography. The first, represents the realization that reliable quantum information processing could be achieved from imperfect physical components. The second, is a duality between two physical systems on different spatial dimensions which may be identified leading to the exact same predictions. Notably, only one of the two systems explicit includes gravitational features. Recently, quantum information has emerged as a natural tool to relate these two descriptions. As such, concepts familiar to quantum information scientists such as entanglement, compression and quantum error correction are playing important roles in understanding this duality. Conversely, the holographic duality is proposing a new lens through which to explore aspects of quantum error correction. In this talk, I will introduce some of the properties imposed by holography on corresponding quantum error-correcting codes, describe explicit tensor network codes which exhibit some of these properties and explore the implications of holographic predictions from a code-theoretic perspective.

**Date:** 23 March 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Vlatko Vedral, CQT, NUS

**Quantum Physics: A Possible Theory of the World as a Whole**

**Abstract:**

Quantum mechanics is commonly said to be a theory of microscopic things: molecules, atoms, subatomic particles. Most physicists, though, think it applies to everything, no matter what the size. The reason its distinctive features tend to be hidden is not a simple matter of scale. Over the past few years experimentalists have seen quantum effects in a growing number of macroscopic systems. The quintessential quantum effect, entanglement, can even occur in large systems as well as warm ones - including living organisms - even though molecular jiggling might be expected to disrupt entanglement.

I will discuss how techniques from information theory, quantum and statistical physics, can all be combined to elucidate the physics of macroscopic objects. Can it be that part of the macroscopic world is quantum, while the rest is, in some sense, classical? This question is also of fundamental importance to the development of future quantum technologies, whose behavior takes place invariably in the macroscopic non-equilibrium quantum regime.

I will discuss the concept of quantum macroscopicity and argue that it should be quantified in terms of coherence based on a set of conditions that should be satisfied by any measure of macroscopic coherence. I will show that this enables a rigorous justification of a previously proposed measure of macroscopicity based on the quantum Fisher information. This might shed new light on the standard Schrödinger cat type interference experiment that is meant to demonstrate the existence of macroscopic superpositions and entanglement.

**Date:** 27 April 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Valerio Scarani, CQT, NUS

**The applied side of Bell nonlocality**

**Abstract:**

Since its formulation in 1964, Bell's theorem has been classified under "foundations of physics". Ekert's 1991 attempt to relate it to an applied task, quantum cryptography, was quenched by an approach that relied on a different basis and was allegedly equivalent.
Ekert's intuition was finally vindicated with the discovery of "device-independent certification" of quantum devices. In this colloquium, I shall revisit the tortuous history of that discovery and mention some of the subsequent results.

Some references that review this topic:

V. Scarani, Acta Physica Slovaca 62, 347 (2012) [https://arxiv.org/abs/1303.3081]

N. Brunner et al., Rev. Mod. Phys. 86, 419 (2014) [https://arxiv.org/abs/1303.2849]

S. Pironio et al., New J. Phys. 18, 100202 (2016) [http://iopscience.iop.org/1367-2630/focus/Focus-on-Device-Independent-Quantum-Information]

**Date:** 18 May 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Joe Fitzsimons, CQT, NUS & SUTD

**Secure quantum computation**

**Abstract:**

The realisation that conventional information theory and models of computation do not account for the full generality of states and operations described by quantum mechanics has led to the burgeoning field of quantum information processing. By harnessing quantum phenomena it is possible to produce stronger forms of cryptography and more efficient algorithms than could exist in a purely classical world. Computer security lies at the intersection of computation and cryptography, and has become an increasingly important topic in recent years. Since quantum information processing leads to advantages in cryptography and computation separately, it is natural to ask whether it may also enhance computer security. In this talk I will argue that the answer to this question is a resounding “yes”, and discuss recent developments in the field.

**Date:** 27 Jul 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Dimitris Angelakis, CQT, NUS

**Quantum simulations with strongly interacting photons: Merging condensed matter with quantum optics for quantum technologies**

**Abstract:**

Classical computers require enormous computing power and memory to simulate even the most modest quantum systems. That makes it difficult to model, for example, why certain materials are insulators and others are conductors or even superconductors. R. Feynman had grasped this since the 1980s and suggested to use instead another more controllable and perhaps artificial quantum system as a "quantum computer" or specifically in this case a "quantum simulator".

Working examples of quantum simulators today include extremely cold atoms trapped with lasers and magnetic fields and ions in electromagnetic traps. Photons and polaritons in light-matter systems have also recently emerged as a promising avenue especially for simulating out of equilibrium many-body phenomena in a natural driven-dissipative setting.

I will briefly review in non-specialist terms the main results in this area including the early ideas on realizing Mott insulators, Fractional Hall states and Luttinger liquids with photons [1,2,3]. After that I will present in more detail a recent experiment in many-body localization physics using interacting photons in the latest superconducting quantum chip of Google [4]. A simple method to study the energy-levels-and their statistics - of many-body quantum systems as they go through the ergodic to many-body localized (MBL) transition, was proposed and implemented. The formation of a mobility edge of an energy band was observed and its shrinkage with disorder toward the center of the bands was measured, a direct observation of a canonical condensed matter concept perhaps for the first time.

Beyond the applications in understanding fundamental physics, the potential impact of this field in different areas of quantum and nano technology and material science will be touched upon.

References

1. D.G. Angelakis and C. Noh “Many-body physics and quantum simulations with light” Report of Progress in Physics, 80 016401 (2016)

2. "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G. Angelakis, Quantum Science and Technology Series, Springer International Publishing, 2017, ISBN 978-3-319-52023-0, DOI 10.1007/978-3-319-52025-4

3. Keil, Noh, Rai, Stutzer, Nolte, Angelakis, A. Szameit "Optical simulation of charge conservation violation and Majorana dynamics", Optica 2, 454 (2015)

4. P. Roushan, C. Neill, J. Tangpanitanon,V.M. Bastidas,, …, D.G. Angelakis, J. Martinis. “Spectral signatures of many-body localization of interacting photons”, under review

**Date:** 31 August 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Berge Englert, CQT, NUS

**What do the data tell us?**

**Abstract:**

We gather information about physical systems by observation. In the realm of quantum physics, the experiments give us probabilistic data with natural statistical fluctuations that cannot be reduced by better instrumentation. What do such data tell us about the quantum system under study? A systematic and reliable answer can be given with the methods of quantum state estimation and quantum parameter estimation. I will report on recent developments.

**Date:** 7 Sept 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Katsunari Okamoto, Okamoto Laboratory, Japan

**Evolution and Perspective of Planar Waveguide Devices**

**Abstract:**

The talk will review progress and future prospects of planar waveguide devices. Silica-based PLCs (planar lightwave circuits) and InP PICs (photonic integrated circuits) are widely used in the current WDM and FTTH systems. The success of silica PLCs and InP PICs strongly depends on their well controlled core geometries and refractive-index uniformities. On the other hand silicon photonics is widely regarded as a promising technology to meet the requirements of rapid bandwidth growth and energy-efficient communications while reducing cost per bit. One of the most prominent advantages of photonics interconnection over metallic interconnects is higher bandwidth and signal routing functionality using WDM technology. Expectations on Si photonics and technical challenges for silicon photonics will be described.

### Forthcoming Talks

CQT Talk by Signe Seidelin, Institut NEEL

Title: Strain-coupled optomechancics with rare-earth doped crystals

Date/Time: 17 Aug, 04:00 PM

Venue: CQT Level 3 Seminar Room, S15-03-15

Abstract:

The laws of quantum physics have been tested meticulously over the last century, using photons, atoms, molecules and other microscopic systems. An exciting challenge of modern physics is to investigate the quantum behavior of a bulk “material” object - for instance a mechanical oscillator - placed in a non-classical state. One major difficulty relies in interacting with the mechanical object without perturbing with its quantum behavior. An approach consists of exploiting a hybrid quantum system consisting of a mechanical oscillator coupled to an atom-like object, and interact via the atom-like object. A particularly appealing coupling mechanism between resonator and “atom” is based on material strain. Here, the oscillator is a bulk object containing an embedded artificial atom (dopant, quantum dot, ...) which is sensitive to mechanical strain of the surrounding material. Vibrations of the oscillator result in a time-varying strain field that modulates the energy levels of the embedded structure. We have recently suggested to use rare-earth doped crystals for strain-coupled systems [1]. More concretely, we are currently studying an yttrium silicate (Y2SiO5) crystal containing a triply charged europium ion (Eu3+), which is optically active. The reason behind this choice stems from the extraordinary coherence properties of this dopant, combined with its high strain-sensitivity: the Eu3+ in an Y2SiO5 matrix has an optical transition with the narrowest linewidth known for a solid-state emitter [2], and the transition is directly sensitive to strain [3]. We have succesfully fabricated mechanical resonators, designed and set up the experiment, and achieved a signal-to-noise ratio compatible with the planned measurements [4].

[1] K. Mølmer, Y. Le Coq and S. Seidelin, Dispersive coupling between light and a rare-earth ion doped mechanical resonator, Phys. Rev. A 94, 053804 (2016)

[2] R. Yano, M. Mitsunaga, and N. Uesugi, Ultralong optical dephasing time in Eu3+:Y2SiO5, Optics Letters, 16, 1884 (1991)

[3] M. J. Thorpe et al., Frequency stabilization to 6 x10-16 via spectral-hole burning, Nature Photonics, 5, 688 (2011)

[4] O. Gobron et al, Submitted.

CQT Talk by Xiaoting Wang, University of Electronic Science and Technology of China

Title: From quantum control to quantum computing --How control and optimization design reduces quantum errors

Date/Time: 22 Aug, 04:00 PM

Venue: CQT Level 3 Seminar Room, S15-03-15

Abstract:

Quantum information processing(QIP) has been identified as one of the key future technologies that are crucial for communication, cryptography, computing, complex-system simulation, metrology, artificial intelligence and national security. Quantum control, on the other hand, provides a powerful tool to analyze and improve the physical performances of different QIP devices. In this talk, I will introduce three different methods that can be readily implemented in experiment to reduce quantum noise, the big obstacle towards large-scale quantum computing. These methods are (1) optimal cooling, (2) minimal noise subsystems, and (3) quantum brachistochrone control. Finally, as an application, I present a work in collaboration with the experimentalists, implementing the brachistochrone design to reduce errors on spin qubits in solid.

CQT Talk by Alastair Kay, Royal Holloway, University of London

Title: Quantum State Transfer in the Presence of Errors

Date/Time: 24 Aug, 04:00 PM

Venue: CQT Level 3 Seminar Room, S15-03-15

Abstract: One of the biggest challenges for the practical realisation of quantum computers is how to deal with errors. Certainly, we have well-developed theories of error correction, which are ideally suited to the gate model of quantum computation, and Pauli errors. What if your quantum computer doesn't look like that? What if it's based on Hamiltonian evolution, like an analogue quantum simulator? Even if errors start off like Pauli errors, they quickly evolve into very different entities. In this talk, I will discuss strategies for dealing with these errors for a specific form of Hamiltonian, in the hope that some of the ideas can be used more broadly in the future. Ultimately, we arrive at true error correction strategies in this evolving Hamiltonian scenario.

### Workshops & Conferences

4-8 September 2017 :
17th Asian Quantum Information Science Conference |